Refining Chandra/acis Subpixel Event Repositioning Using a Backside-illuminated Ccd Model
نویسندگان
چکیده
Subpixel event repositioning (SER) techniques have been demonstrated to significantly improve the already unprecedented spatial resolution of Chandra X-ray imaging with the Advanced CCD Imaging Spectrometer (ACIS). Chandra CCD SER techniques are based on the premise that the impact position of events can be refined, based on the distribution of charge among affected CCD pixels. ACIS SER models proposed thus far are restricted to corner split (3 and 4 pixel) events and assume that such events take place at the splitpixel corners. To improve the event-counting statistics, we modified the ACIS SER algorithms to include 2 pixel split events and single-pixel events, using refined estimates for photon impact locations. Furthermore, simulations that make use of a high-fidelity backside-illuminated (BI) CCD model demonstrate that mean photon impact positions for split events are energy dependent, leading to further modification of subpixel event locations according to event type and energy, for BI ACIS devices. Testing on Chandra CCD X-ray observations of the Orion Nebula Cluster indicates that these modified SER algorithms further improve the spatial resolution of Chandra/ACIS, to the extent that the spreading in the spatial distribution of photons is dominated by the high-resolution mirror assembly, rather than by ACIS pixelization. Subject headings: instrumentation: detectors — methods: data analysis — techniques: image processing — X-rays: general On-line material: color figures
منابع مشابه
ar X iv : a st ro - p h / 01 11 03 1 v 1 1 N ov 2 00 1 Modeling Charge Transfer Inefficiency in the Chandra Advanced CCD Imaging Spectrometer
The front-illuminated (FI) CCDs in the Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory (Chandra) were damaged in the extreme environment of the Earth’s radiation belts, causing charge traps that result in enhanced charge transfer inefficiency (CTI) during parallel readout. This causes row-dependent gain, event grade ‘morphing’ (spatial redistribution of charge) and ene...
متن کاملar X iv : a st ro - p h / 04 07 19 9 v 1 9 J ul 2 00 4 A charge transfer inefficiency correction model for the Chandra Advanced CCD Imaging Spectrometer
Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earth's radiation belts. The primary effect of the damage was to increase the charge transfer inefficiency (CTI) of the eight front illuminated CCDs by more than two orders of mag...
متن کاملMitigating Charge Transfer Inefficiency in the Chandra X-Ray Observatory Advanced CCD Imaging Spectrometer.
The ACIS front-illuminated CCDs on board the Chandra X-Ray Observatory were damaged in the extreme environment of the Earth's radiation belts, resulting in enhanced charge transfer inefficiency (CTI). This produces a row dependence in gain, event grade, and energy resolution. We model the CTI as a function of input photon energy, including the effects of detrapping (charge trailing), shielding ...
متن کاملar X iv : a st ro - p h / 00 04 04 8 v 1 4 A pr 2 00 0 Mitigating Charge Transfer Inefficiency in the Chandra X - ray Observatory ’ s ACIS Instrument
The ACIS front-illuminated CCDs onboard the Chandra X-ray Observatory were damaged in the extreme environment of the Earth's radiation belts, resulting in enhanced charge transfer inefficiency (CTI). This produces a row dependence in gain, event grade, and energy resolution. We model the CTI as a function of input photon energy, including the effects of de-trapping (charge trailing), shielding ...
متن کاملar X iv : a st ro - p h / 01 11 00 3 v 1 3 1 O ct 2 00 1 Simulating CCDs for the Chandra Advanced CCD Imaging Spectrometer
We have implemented a Monte Carlo algorithm to model and predict the response of various kinds of CCDs to X-ray photons and minimally-ionizing particles and have applied this model to the CCDs in the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer. This algorithm draws on empirical results and predicts the response of all basic types of X-ray CCD devices. It relies on new solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002